

Temporal Difference Learning for Model Predictive Control

Nicklas Hansen, Xiaolong Wang, Hao Su UC San Diego

> Chang-Hun Ji 2022. 4. 13 LINK@KoreaTech http://link.koreatech.ac.kr

Abstract

- Data-driven model predictive control
 - Advantages
 - Improving sample efficiency through model learning
 - Better performance as computational budget for planning increases
 - Challenges
 - High cost to plan over long horizons
 - Obtaining an accurate model of the environment
- Combine the strengths of model-free and model-based methods

Task-oriented latent dynamics model

+

Model Predictive Control (short horizon, model-based methods)

TD-MPC (Temporal Difference learning for Model Predictive Control)

+

Terminal value function (long term return, model-free methods)

Introduction

- ♦ Model-based RL
 - Planning
 - Prohibitively expensive to plan over long horizons
 - Using a learned model to improve sample-efficiency
 - Model biases likely to propagate to the policy

Can we instead augment model-based planning with the strengths of model-free learning?

Preliminaries

♦ Model Predictive Control(MPC)

$$\Pi_{\theta}^{\mathrm{MPC}}(\mathbf{s}_t) = \arg\max_{\mathbf{a}_{t:t+H}} \mathbb{E}\left[\sum_{i=t}^{H} \gamma^i \mathcal{R}(\mathbf{s}_i, \mathbf{a}_i)\right]$$

- $-\Pi$ is traditionally implemented as a trajectory optimization procedure
- To make the problem tractable, one typically obtains a local solution
 - local solution: Estimating optimal actions $a_{t:t+H}$ over a finite horizon H
 - Executing the first action a_t
- γ is typically set to 1
- A solution can be found by iteratively fitting parameters of a family of distributions
 - Parameters: μ , σ for a multivariate Gaussian with diagonal covariance
 - Using the derivative-free Cross Entropy Method (CEM; Rubinstein (1997))
 - Sample trajectories generated by a model

Preliminaries

♦ Model Predictive Control(MPC)

$$\Pi_{ heta}^{ ext{MPC}}(\mathbf{s}_t) = rg\max_{\mathbf{a}_{t:t+H}} \mathbb{E}\left[\sum_{i=t}^{H} \gamma^i \mathcal{R}(\mathbf{s}_i, \mathbf{a}_i)\right]$$

- As opposed to fitted Q-iteration, MPC is not predictive of long-term rewards
- When a value function is known, it can be used in conjunction with MPC to estimate discounted return at state s_{t+H} and beyond

♦ TD-MPC

- A framework that combines MPC with a task-oriented latent dynamics model and terminal value function jointly learned using TD-learning in an online RL setting.
- Components, Notation
 - Control for planning
 - ➤ Model Predictive Path Integral (MPPI; Williams et al. (2015))
 - $> \Pi_{\theta}$
 - Task-Oriented Latent Dynamics Model

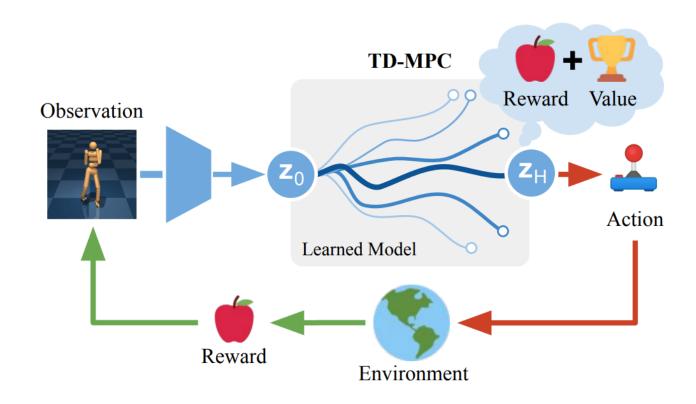
Representation: $\mathbf{z}_t = h_{\theta}(\mathbf{s}_t)$

Latent dynamics: $\mathbf{z}_{t+1} = d_{\theta}(\mathbf{z}_t, \mathbf{a}_t)$

Reward: $\hat{r}_t = R_{\theta}(\mathbf{z}_t, \mathbf{a}_t)$

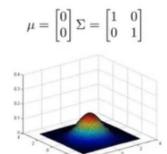
Value: $\hat{q}_t = Q_{\theta}(\mathbf{z}_t, \mathbf{a}_t)$

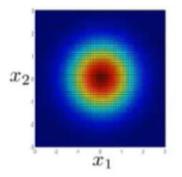
- A parameterized policy
 - $\succ \pi_{\theta}$
- Sampled trajectory
 - $\triangleright \Gamma$
- Total return of Γ
 - $\triangleright \phi_{\Gamma}$



```
Algorithm 1 TD-MPC (inference)
Require: \theta: learned network parameters
               \mu^0, \sigma^0: initial parameters for \mathcal{N}
               N, N_{\pi}: num sample/policy trajectories
               \mathbf{s}_t, H: current state, rollout horizon
  1: Encode state \mathbf{z}_t \leftarrow h_{\theta}(\mathbf{s}_t) \quad \triangleleft Assuming TOLD model
 2: for each iteration j = 1..J do
         Sample N traj. of len. H from \mathcal{N}(\mu^{j-1}, (\sigma^{j-1})^2 \mathbf{I})
         Sample N_{\pi} traj. of length H using \pi_{\theta}, d_{\theta}
         // Estimate trajectory returns \phi_{\Gamma} using d_{\theta}, R_{\theta}, Q_{\theta},
            starting from \mathbf{z}_t and initially letting \phi_{\Gamma} = 0:
         for all N + N_{\pi} trajectories (\mathbf{a}_t, \mathbf{a}_{t+1}, \dots, \mathbf{a}_{t+H}) do
 6: for step t = 0..H - 1 do
  7: \phi_{\Gamma} = \phi_{\Gamma} + \gamma^t R_{\theta}(\mathbf{z}_t, \mathbf{a}_t) \triangleleft Reward
 8: \mathbf{z}_{t+1} \leftarrow d_{\theta}(\mathbf{z}_t, \mathbf{a}_t) \lhd Latent transition
 9: \phi_{\Gamma} = \phi_{\Gamma} + \gamma^H Q_{\theta}(\mathbf{z}_H, \mathbf{a}_H) \quad \triangleleft \text{Terminal value}
         // Update parameters \mu, \sigma for next iteration:
       \mu^j, \sigma^j = \text{Equation 4 (and Equation 5)}
11: return a \sim \mathcal{N}(\mu^J, (\sigma^J)^2 \mathbf{I})
```

- ♦ Model Predictive Path Integral(MPPI)
 - An MPC algorithm that iteratively updates parameters for a family of distributions
 - MPPI's updatable parameters
 - A time-dependent multivariate Gaussian with diagonal covariance's means, standard deviations $\triangleright \mu, \sigma$





• Starting from initial parameters

$$(\mu^0, \sigma^0)_{t:t+H}, \ \mu^0, \sigma^0 \in \mathbb{R}^m, \ \mathcal{A} \in \mathbb{R}^m$$

- > independent parameters for each action over a horizon of length H
- Sampling action

$$\mathbf{a}_t \sim \mathcal{N}(\mu_t^{j-1}, (\sigma_t^{j-1})^2 \mathbf{I})$$

♦ TD-MPC

– Independently sample N trajectories using rollouts generated by the learned model d_{θ}

- estimate the total return \emptyset_{Γ} of a sampled trajectory Γ

Task-oriented latent dynamics model

Long term return, Terminal value function, Model-free methods $\phi_{\Gamma} \triangleq \mathbb{E}_{\Gamma} \left[\underline{\gamma^H Q_{\theta}(\mathbf{z}_H, \mathbf{a}_H)} + \underbrace{\sum_{t=0}^{H-1} \gamma^t R_{\theta}(\mathbf{z}_t, \mathbf{a}_t)}_{} \right]$ MPC, short horizon, model-based methods

Task-oriented latent dynamics model

+

Model Predictive Control (short horizon, model-based methods)

TD-MPC
(Temporal Difference learning for Model Predictive Control)

+

Terminal value function (long term return, model-free methods)

- Updates parameters
 - 1) Select top-k returns ϕ_{Γ}^*
 - 2) Obtain new parameters μ_j , σ_j at iteration j from a \emptyset_{Γ}^* -normalized empirical estimate

$$\mu^j = \frac{\sum_{i=1}^k \Omega_i \Gamma_i^\star}{\sum_{i=1}^k \Omega_i} \,, \; \sigma^j = \sqrt{\frac{\sum_{i=1}^k \Omega_i (\Gamma_i^\star - \mu^j)^2}{\sum_{i=1}^k \Omega_i}} \quad \text{,where} \quad \begin{array}{l} \Omega_i = e^{\tau(\phi_{\Gamma,i}^\star - \max_g(\phi_{\Gamma,g}^\star))} \\ \tau = \text{temperature parameter} \\ \Gamma_i^* = i \text{th top-k trajectory} \end{array}$$

- 3) After a fixed number of iterations J, the planning procedure is terminated
- 4) A trajectory(action) is sampled from the final return-normalized distribution over action sequences.
- Plan at each decision step t and execute only the first action
 - Employ receding-horizon MPC to produce a feedback policy

- Warm start
 - Trajectory optimization at each step t by reusing the 1-step shifted mean μ obtained at the previous step
 - Always use a large initial variance to avoid local minima
- Exploration on planning
 - We find that the rate at which σ decays varies wildly between tasks, leading to (potentially poor) local optima for small σ

$$\sigma^{j} = \max\left(\sqrt{\frac{\sum_{i=1}^{N} \Omega_{i} (\Gamma_{i}^{\star} - \mu^{j})^{2}}{\sum_{i=1}^{N} \Omega_{i}}}, \epsilon\right)$$

- Linearly increase the planning horizon from 1 to H
- Policy-guided trajectory optimization
 - We augment the CEM sampling with additional samples from π_{θ}

```
Algorithm 1 TD-MPC (inference)
Require: \theta: learned network parameters
               \mu^0, \sigma^0: initial parameters for \mathcal{N}
               N, N_{\pi}: num sample/policy trajectories
               \mathbf{s}_t, H: current state, rollout horizon
  1: Encode state \mathbf{z}_t \leftarrow h_{\theta}(\mathbf{s}_t) \quad \triangleleft Assuming TOLD model
 2: for each iteration j = 1..J do
         Sample N traj. of len. H from \mathcal{N}(\mu^{j-1}, (\sigma^{j-1})^2 I)
         Sample N_{\pi} traj. of length H using \pi_{\theta}, d_{\theta}
         // Estimate trajectory returns \phi_{\Gamma} using d_{\theta}, R_{\theta}, Q_{\theta},
            starting from \mathbf{z}_t and initially letting \phi_{\Gamma} = 0:
         for all N + N_{\pi} trajectories (\mathbf{a}_t, \mathbf{a}_{t+1}, \dots, \mathbf{a}_{t+H}) do
 6: for step t = 0..H - 1 do
  7: \phi_{\Gamma} = \phi_{\Gamma} + \gamma^t R_{\theta}(\mathbf{z}_t, \mathbf{a}_t) \triangleleft Reward
 8: \mathbf{z}_{t+1} \leftarrow d_{\theta}(\mathbf{z}_t, \mathbf{a}_t) \lhd Latent transition
 9: \phi_{\Gamma} = \phi_{\Gamma} + \gamma^H Q_{\theta}(\mathbf{z}_H, \mathbf{a}_H) \quad \triangleleft \text{Terminal value}
         // Update parameters \mu, \sigma for next iteration:
       \mu^j, \sigma^j = \text{Equation 4 (and Equation 5)}
11: return a \sim \mathcal{N}(\mu^J, (\sigma^J)^2 \mathbf{I})
```

- ♦ Task-Oriented Latent Dynamics (TOLD)
 - Jointly learned together with a terminal value function using TD-learning
 - Rather than attempting to model the environment itself, our TOLD model learns to only model elements of the environment that are predictive of reward, which is a far easier problem.
 - Components

Representation: $\mathbf{z}_t = h_{\theta}(\mathbf{s}_t)$

Latent dynamics: $\mathbf{z}_{t+1} = d_{\theta}(\mathbf{z}_t, \mathbf{a}_t)$

Reward: $\hat{r}_t = R_{\theta}(\mathbf{z}_t, \mathbf{a}_t)$

Value: $\hat{q}_t = Q_{\theta}(\mathbf{z}_t, \mathbf{a}_t)$

Policy: $\hat{\mathbf{a}}_t \sim \pi_{\theta}(\mathbf{z}_t)$

We find it sufficient to implement all components of TOLD as purely deterministic MLPs.

LINK@KoreaTech

- ◆ Task-Oriented Latent Dynamics (TOLD)
 - Objective for prediction of representation, latent dynamics, reward, value

$$\mathcal{J}(\theta; \Gamma) = \sum_{i=t}^{t+H} \lambda^{i-t} \mathcal{L}(\theta; \Gamma_i)$$

$$\mathcal{L}(\theta; \Gamma_i) = c_1 \|R_{\theta}(\mathbf{z}_i, \mathbf{a}_i) - r_i\|_2^2$$

$$+ c_2 \|Q_{\theta}(\mathbf{z}_i, \mathbf{a}_i) - (r_i + \gamma Q_{\theta^-}(\mathbf{z}_{i+1}, \pi_{\theta}(\mathbf{z}_{i+1})))\|_2^2$$

$$+ c_3 \|d_{\theta}(\mathbf{z}_i, \mathbf{a}_i) - h_{\theta^-}(\mathbf{s}_{i+1})\|_2^2$$
latent state consistency

If we use max Q value by planning, the computation's cost is extremely high

$$\max_{\mathbf{a}_t} Q_{\theta^-}(\mathbf{z}_t, \mathbf{a}_t)$$

- ◆ Task-Oriented Latent Dynamics (TOLD)
 - Objective for policy

$$\mathcal{J}_{\pi}(\theta; \Gamma) = -\sum_{i=t}^{t+H} \lambda^{i-t} Q_{\theta}(\mathbf{z}_i, \pi_{\theta}(\operatorname{sg}(\mathbf{z}_i)))$$

♦ TOLD

```
Algorithm 2 TOLD (training)
Require: \theta, \theta^-: randomly initialized network parameters
                \eta, \tau, \lambda, \mathcal{B}: learning rate, coefficients, buffer
  1: while not tired do
          // Collect episode with TD-MPC from s_0 \sim p_0:
          for step t = 0...T do
  4: \mathbf{a}_t \sim \Pi_{\theta}(\cdot | h_{\theta}(\mathbf{s}_t)) \triangleleft Sample with TD-MPC
  5: (\mathbf{s}_{t+1}, r_t) \sim \mathcal{T}(\cdot|\mathbf{s}_t, \mathbf{a}_t), \ \mathcal{R}(\cdot|\mathbf{s}_t, \mathbf{a}_t) \ \triangleleft \textit{Step env.}
  6: \mathcal{B} \leftarrow \mathcal{B} \cup (\mathbf{s}_t, \mathbf{a}_t, r_t, \mathbf{s}_{t+1}) \triangleleft Add to buffer
          // Update TOLD using collected data in \mathcal{B}:
          for num updates per episode do
          \{\mathbf{s}_t, \mathbf{a}_t, r_t, \mathbf{s}_{t+1}\}_{t:t+H} \sim \mathcal{B} \triangleleft Sample traj.
10: \mathbf{z}_t = h_{\theta}(\mathbf{s}_t) \triangleleft Encode first observation
11: J = 0 \triangleleft Initialize J for loss accumulation
12: for i = t...t + H do
13: \hat{r}_i = R_{\theta}(\mathbf{z}_i, \mathbf{a}_i) \triangleleft Equation 8
14: \hat{q}_i = Q_{\theta}(\mathbf{z}_i, \mathbf{a}_i) \triangleleft Equation 9
15: \mathbf{z}_{i+1} = d_{\theta}(\mathbf{z}_i, \mathbf{a}_i) \triangleleft Equation 10

16: \hat{a}_i = \pi_{\theta}(\mathbf{z}_i) \triangleleft Equation 11
17: J \leftarrow J + \lambda^{i-t} \mathcal{L}(\mathbf{z}_{i+1}, \hat{r}_i, \hat{q}_i, \hat{\mathbf{a}}_i) \triangleleft Equation 7
18: \theta \leftarrow \theta - \frac{1}{H} \eta \nabla_{\theta} J \triangleleft Update online network
              \theta^- \leftarrow (1-\tau)\theta^- + \tau\theta \quad \triangleleft Update \ target \ network
19:
```

Baselines

- SAC
- LOOP
 - A hybrid algorithm that extends SAC with planning and a learned model
- MPC with a ground truth simulator
- CURL
 - Contrastive Unsupervised Representations for Reinforcement Learning
- DrQ
 - Data-regularized Q
 - Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels
- PlaNet
- Dreamer
- MuZero
- EfficientZero
- Ablations
 - Using state predictor
 - Without the latent consistency loss

LINK@KoreaTech

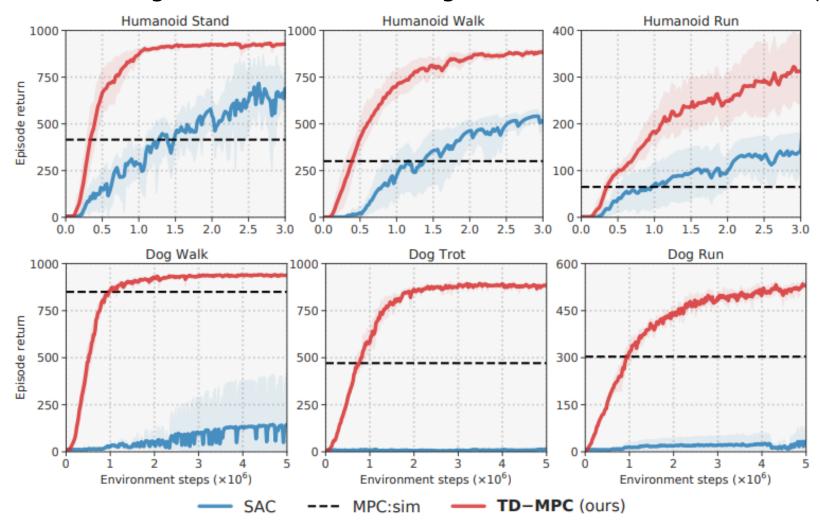
♦ Baselines

Method	Model objective	Value	Inference	Continuous	Compute
SAC	×	√	Policy	✓	Low
QT-Opt	×	√	CEM	√	Low
MPC:sim	Ground-truth model	X	CEM	\checkmark	High
POLO	Ground-truth model	√	CEM	✓	High
LOOP	State prediction	\checkmark	Policy w/ CEM	✓	Moderate
PlaNet	Image prediction	X	CEM	✓	High
Dreamer	Image prediction	\checkmark	Policy	✓	Moderate
MuZero	Reward/value pred.	\checkmark	MCTS w/ policy	×	Moderate
EfficientZero	Reward/value pred. + contrast.	\checkmark	MCTS w/ policy	×	Moderate
TD-MPC (ours)	Reward/value pred. + latent pred.	√	CEM w/ policy	√	Low

MuZero's loss function:
$$l_t(\theta) = \sum_{k=0}^K l^r(u_{t+k}, r_t^k) + l^v(z_{t+k}, v_t^k) + l^p(\pi_{t+k}, \mathbf{p}_t^k) + c||\theta||^2$$

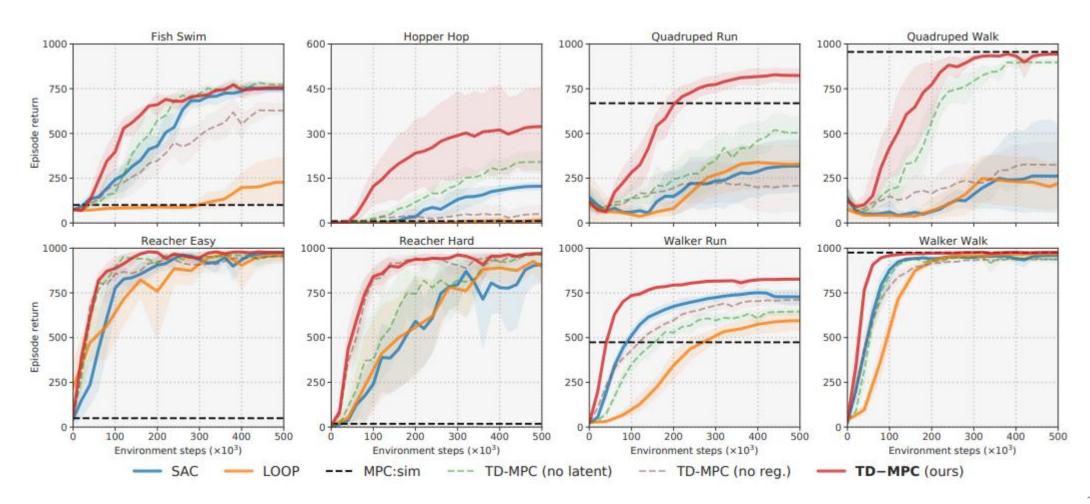
Environments

- 6 Humanoid and Dog locomotion tasks with high-dimensional state and action spaces



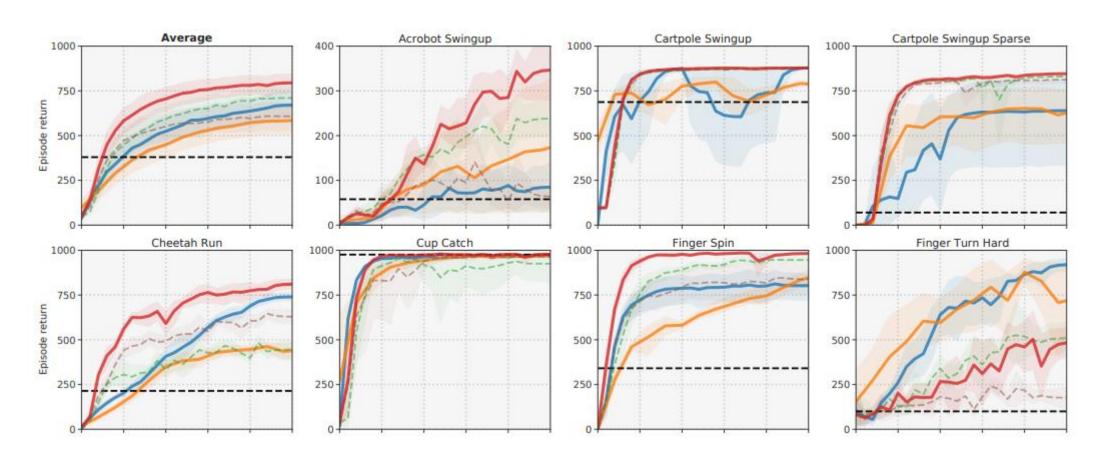
Environments

- 15 diverse continuous control tasks from DM-Control, 6 of which have sparse rewards



Environments

- 15 diverse continuous control tasks from DMControl, 6 of which have sparse rewards



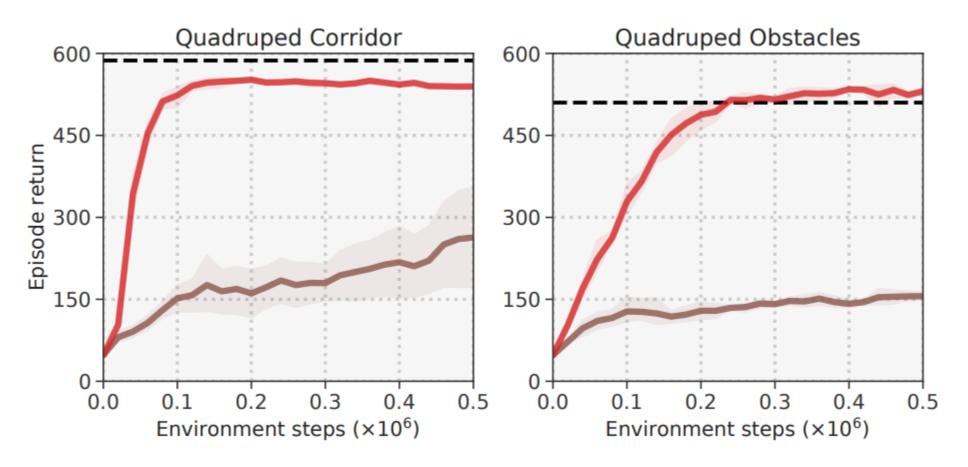
Environments

6 image-based tasks from the data-efficient DMControl 100k benchmark.

	Model-free				Model-based			Ours	
100k env. steps	SAC State	SAC Pixels	CURL	DrQ	PlaNet	Dreamer	MuZero*	Eff.Zero*	TD-MPC
Cartpole Swingup	812 ± 45	$419_{\pm 40}$	$597{\pm}170$	$759 {\pm} 92$	563±73	$326{\pm}27$	$219{\scriptstyle\pm122}$	$813 {\pm} 19$	770±70
Reacher Easy	919 ± 123	145 ± 30	517 ± 113	601 ± 213	82±174	$314{\pm}155$	493 ± 145	$952 {\pm} 34$	628 ± 105
Cup Catch	957 ± 26	312 ± 63	$772{\pm}241$	$913 {\pm} 53$	710±217	$246{\pm}174$	542 ± 270	$942{\scriptstyle\pm17}$	933±24
Finger Spin	672 ± 76	166 ± 128	779 ± 108	$901 {\pm} 104$	560±77	341 ± 70	_	_	943 ± 59
Walker Walk	604 ± 317	42 ± 12	$344{\scriptstyle\pm132}$	$612 {\pm} 164$	221 ± 43	$277{\pm}12$	_	_	$577{\pm}208$
Cheetah Run	$228{\pm}95$	103 ± 38	$307 {\pm} 48$	$344 {\pm} 67$	165 ± 123	$235{\pm}137$	_	_	222 ± 88

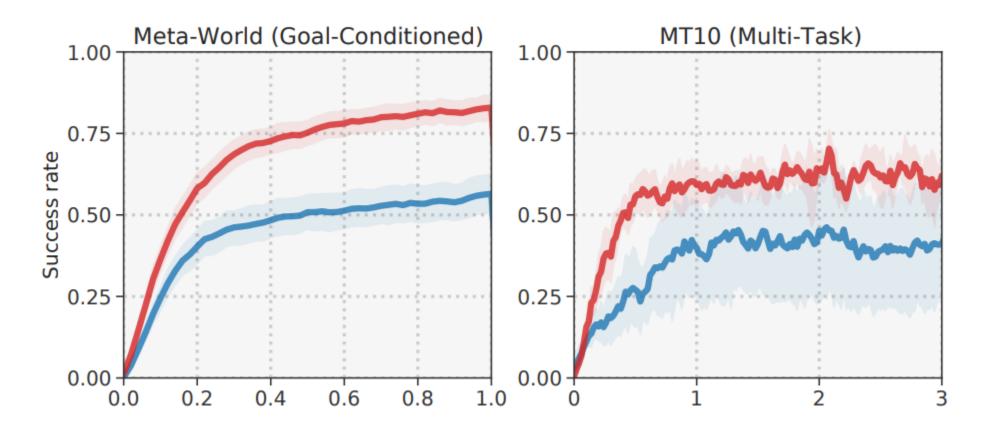
Environments

 2 multi-modal (proprioceptive data + egocentric camera) 3D locomotion tasks in which a quadruped agent navigates around obstacles.



Environments

50 goal-conditioned manipulation tasks from MetaWorld, as well as a multi-task setting where
 10 tasks are learned simultaneously.



감사합니다.